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Models proposed so far for the relationship between mechanical strength (stress to fracture) and filler content 
(volume fraction) of rigid matrix particulate composites are briefly reviewed. In the case of no adhesion 
between matrix and filler particles, for which regular, semiregular and random models have been formulated, 
a new semiempirical equation, based on the more realistic random structural view, is suggested as an attempt 
towards a unifying treatment of the subject. It,is also shown that the same equation, properly modified on 
purely empirical grounds, can be used when adhesion between matrix and filler is present. 

(Keywords: particulate c o m p o s i t e s ;  f i l led polymers; materials strength; constitutive equations) 

I N T R O D U C T I O N  

In polymer science, problems involving the relation 
between mechanical strength of particulate composites 
and structural and processing variables have received 
particular attention in the last two decades. A 
concomitant, practical interest in this subject has arisen 
mainly because of possible economies arising from the 
addition of mineral (or inorganic) fillers to known 
polymeric materials, increasingly to enlarge their 
potential and actual applications. 

The quantitative relation between strength and relative 
amount of a particulate filler for composites with a rigid 
matrix has in particular been the object of many 
investigations; these have produced a number of 
theoretical or empirical equations that well fit the 
experimental results. The large number of these 
proposals appears to be the consequence not only of 
several difficulties implicit in the theory of fracture, but 
also of the widely diverse experimental behaviour of 
different materials, as well as of the general proneness of 
experimental fracture values to scatter. 

In this paper, the present state of the suggested models 
is briefly reviewed, with reference also to parallel 
investigations in the metallurgical field, and two new 
unifying equations are presented, whose validity is 
checked also against new experimental results. 

It is known that in order rationally to establish the 
relation between strength (stress to break) of composite 
and amount (volume fraction) of filler, two kinds of 
models have to be formulated, for the two cases of 
adhesion and no adhesion between filler particles and 
matrix. 

CASE OF NO ADHESION 

For absence of adhesion, all the models are based on two 
common assumptions, namely that the fracture follows a 
substantially planar section of the composite; and at the 
breaking strain the filler particles are completely detached 
from the matrix, so that they give rise to a corresponding 

number of holes in the matrix, and the strength of the 
composite depends solely on the matrix phase. 

Area  reduc t ion  mode ls  

For a derivation of 'simple' laws, an additional 
assumption is introduced, that the presence of the holes 
does not modify the level of the critical local state of 
maximum stress that causes the failure of the matrix 
phase. 

In this case, the strength of the matrix phase (in the 
system matrix-holes) is equal to that of the matrix 
material (without holes). Then, the strength of the 
composite is due solely to that of the matrix, which 
occupies only a part, A m ,  of the whole area, Ac, of the 
fracture surface of the composite. 

If F is the breaking load, and o- m the strength of the 
matrix material, the strength, ac, and the 'relative 
strength', ~rel, of the composite can be expressed as: 

(r~ = F / A  c = ~rmAm/A c (1) 

O're I = O'c/O" m = Am/A c (2) 

Different structural models may be formulated to 
calculate the geometrical ratio, Am/Ac (area fraction of 
matrix), as a function of the filler (holes) volume fraction. 

R e g u l a r  models .  Consider a mass of matrix material, 
with a volume fraction, O, of spherical holes, of equal 
radius, uniformly distributed. This uniform distribution 
may be postulated for simplicity as a regular array of 
spheres, like that of a crystallographic lattice. Generally, 
planar sections through these structures do not contain 
the same area fraction of matrix material. Under an 
equivalent state of stress it can be supposed that the 
fracture will take place along a planar section of minimal 
matrix surface area A*, so that a~, = A * / A  c. 

For a simple cubic array, with one sphere of radius r in 
the unit cell, side l: 

0 =~lz(r/l) 3 
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up to a maximum packing fraction (r=//2): 

(I)ma x = 0.52(36) 

The section of minimal matrix area A* is that parallel to 
a cube face, passing through the centre, and the relative 
strength is easily calculated: 

a,ei = 1 - 1.21 (I)2/3 (0~ (I) ~ 0.52) (3) 

Equation (3) has been introduced for polymeric 
materials filled with glass spheres by Nicolais and 
Narkis t, and for porous metals by Eudier 2. 

For a body-centred cubic array, with two spheres in the 
unit cell: 

=sr~(r/l)3 

(I)ma x = 0.68(02) 

the section of minimal matrix area is diagonal, and 

Orel= 1-- 1.080I) 2/3 (0~<(I)~<0.68) (4) 

For a face-centred cubic array, with 4 spheres in the unit 
cell: 
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Figure l Theoretical values of relative strength (arel) versus filler 
volume fraction ((I)) given by: equation (3), (A); equation (6), (B); equation 
(4), (C); equation (5), (D); and equation (9), (E) 

=!~rc(r/l) 3 

(I)ma x = 0 . 7 4 ( 0 5 )  

the section of minimal matrix area is along every face, and 

tr~j = 1 - 0.96(I)  2/3 (0~< qb ~< 0.74) (5) 

Similarly, for a hexagonal array, the corresponding 
equation is: 

o',~1= 1 -  1.11 • 2/3 (0~<O~< 0.74) (6) 

It may be seen, from these models, that with regular 
filling of equal spheres, for the given assumptions the 
following generalized equation holds: 

O're I = 1 - -  0~(I ) 2 / 3  (7) 

in which the parameter ~ assumes different values (1.21, 
1.08, 0.96 and 1.11) for any of the possible main regular 
configurations (for close packed spheres), with a validity 
range from • = 0 to the • value of the closest packing of 
any configuration (~max = 0.52, 0.68, 0.74 and again 0.74). 
In Figure 1, equation (7) is represented in the forms given 
by equations (3) to (6) (lines A, C, D, B). 

Semiregular models. A wider validity of the relation 
expressed by equation (7), compared with equation (3), 
has been recognized by several investigators. 

As a matter of fact, a more realistic view might lead to 
conceive the hole configuration as a 'mixed' regular array, 
as if the fracture surface was lined with tiles of different 
regularities. In this case equation (7) might be taken as 
holding with an ~ value properly weighted among the 
values of the possible regular arrays (e.g. for loose or close 
random packing of spheres, (IDma x values have been 
estimated in the range 0.60-0.64 (ref. 3), intermediate 
among those of the main regular arrays). 

With reference to porous metals or cermets, Butcher 
and Howlett 4, Ishimaru et al. 5 and Griffiths et al. 6 
considered non-spherical pores, or pore arrangements 
other than the simple cubic one of equation (3), and 
theoretically or empirically found appropriate corrections 
of the parameter ~ in equation (7), with values differing 
from 1.21. Similarly for particular cases of polymeric 
materials, Nicolais and Nicodemo 7 suggested that ~ could 
usefully be considered to be an empirical parametric 
quantity. Furthermore Nicolais and Mashelkar a, on the 
basis of 'major experimental evidence' proposed a 
generalization of the relation in the form: 

tr,~l=l-o~(I)" (ct>O; n < l )  (8) 

although pointing out good fitting of various 
experimental results by taking ~ = 1.21 and n = 2/3, i.e. by 
using equation (3); see Figure 2. 

It is of interest to note that equations (3)-(7) were 
derived from the geometry of strictly regular systems with 
the aim of finding out the weakest planar section of the 
material. However, when the sphere packing is not near 
the closest one, they are equally valid for 'semiregular' 
(smectic) systems; in fact, on the third assumption, in the 
section of minimal matrix content found for any regular 
model the relative positions of the spheres can be 
supposed to vary in the plane towards a random 
configuration without affecting the material strength, 
provided that the matrix area fraction is kept constant. 
Thus, from a different viewpoint, on the assumptions 
made, and when dealing with fracture phenomena, the 
problem could be seen as that of finding the possible (not 
probable) section (or section portion) of minimal (not 
average) matrix content of the real (probably close to 
random) configuration. 

This might explain the physical meaning of empirical 
determinations of the parameter c~ in equation (7), and of 
the circumstance that a value near 1.21 is frequently 
observed (as a lower bound?), being the section described 
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Figure 2 Experimental relative strength, as a function of filler volume 
fraction fitted to equation (3). The experimental results, with six 
composite materials, were taken from various authors: see ref. 8 

by equation (3) that has the lowest matrix content and is 
the weakest of the main regular models. Furthermore, in 
this 'semiregular' picture, strict sphericity of the pores 
becomes unimportant, so that equation (7) can reasonably 
be related to composites with non-spherical filler 
particles. Similarly, to a first approximation it may be 
expected that in some cases the fracture surface can be not 
strictly planar; for these, the introduction of a generalized 
second parameter, n, in equation (8) may be justified. 

In conclusion, the most practical method of solution 
based on regular models appears to be the use of the 
relation in the form mathematically indicated by these 
models but with the introduction of one or two empirical 
parameters, appropriately chosen for classes of filler 
materials to allow a wider range of good fitting of the 
experimental results. 

Random model. A completely different structural 
approach is to consider a uniform, completely random 
system of holes of any shape. In this case the area fraction 
of matrix must be the same for any section through the 
system, and equal to the volume fraction of the matrix 
itself 9. For this model equation (2) becomes: 

O're I = 1 - tD (9) 

and is represented by the diagonal straight line in Figure 1, 
with arc~ values higher than those of the preceding models. 

This simple law generally has been considered as an 
ideal, unattainable upper bound, since it was believed 
that, in addition to a matrix area reduction, critical effects 
ought in any case to be induced by the filler particles in the 
system, with a further decrease of the composite strength. 
However, very recently Danusso et al. ~° found that 
equation (9) is substantially obeyed in composites of 
polyester resins filled with CaCO3 particles of a size of the 
order of a few micrometres. An example is reported in 
Figure 3. 

This result could be expected from the comment of 
Landon et al. ll, on experimental data obtained with 
polyurethane filled with glass spheres, that equation (9) 
represents the law obeyed when the results with different 
particles sizes at constant • are extrapolated to zero size; 
but more precise was a previous conclusion by Lange ~2 
that critical filler effects should be prevented when the 
particle size went below a certain threshold value. In fact, 
for the polyester resins that they used, Danusso et al. ~° 
estimated an inherent flaw size of ~ 30-40 #m, i.e. much 
higher than the particle size, which explains the successful 
application to that case of the simplest (random) area 
reduction model. 

Models including critical effects 

When the addition of the filler particles gives rise to 
local defects that induce critical effects affecting the 
strength of the matrix (particulate inhomogeneities, 
additional cracks or flaws, air bubbles, etc.), the third 
assumption is no longer valid, and more sophisticated 
models must be formulated. 

Although stress concentration problems have been 
solved, e.g. within elasticity theory, for particular 
geometries of holes or inclusions, satisfactory agreement 
of quantitative theoretical predictions of this kind with 
experimental results has not as yet been found for 
particulate composites x 3. 

The only practical way that now remains is to resort to 
empirical corrections of the area reduction models above. 

Previous sugyestions. For regular or semiregular 
models, and for polymeric foams, Masi et al. ~4 suggested 
the introduction of a constant concentration factor 
reducing the matrix strength in equation (3). Following 
this suggestion, for a generalization equation (7) can be 
modified to the two-parameter form: 

O ' r e  I = a(1 - b(I) 2/3) (10) 
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Figure 3 Relative strength of a polyester resin filled with CaCO3; 
( ), curve calculated by equation (9) 
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or equation (8) to the three-parameter form: 

are, = a(1 - bO") (11) 

With the same models, in the metallurgical field, for 
stress concentration effects only modifications implicit in 
the adjustment of ~ in equation (7) have been 
suggested 6, t 5. 

For the random model, one- or two-parameter forms 
have been proposed at different times for porous metals. 
Balshin ~6 suggested the following equation: 

a,¢l = a(1 - (I))" (12) 

and Pines and Suchinin 17 a one-parameter variant of 
equation (9): 

o',e, = 1 - atI:) ( 1 3 )  

whereas Bagshaw et al. is used the two-parameter 
equation: 

O're I =a(1 - b ~ )  (14) 

which was subsequently suggested by Piggott and 
Leidner ~9 for polymeric materials; it was given a 
theoretical interpretation by Leidner and Woodhams 2° 
on the basis of poor adhesion between matrix and 
particles. 

The following one-parameter equation from a modified 
random model was instead suggested by Haynes 21 for 
porous metals: 

1 - -~  
are~ = 1 + b ~  (15) 

in which non-constancy of a 'reduction factor' versus ~ is 
taken into account. 

A new unifying model. In order to simplify the rather 
complex picture that results from the numerous 
suggestions put forward so far, a new unifying model is 
now presented. 

In the simplest, and essentially realistic equation (9), a 
critical effect coefficient, C, can be introduced: 

1 - ~  
O're I 

C 

When critical effects are actually present (C > 1), it seems 
to be reasonable to regard C as dependent on ~ 3,21. To a 
first approximation this dependence may be written as 

C = a + b ~  (16) 

This leads to the general equation: 

1 - ~  
a,et=a+b~ (no adhesion) (17) 

which is represented in Figure 4 for various values of the 
adjustment parameters a and b. 

14'Tth a =  1 and b = 0  (no critical effects) equation (17) 
becomes equation (9); with a = 1 and b = 2 it is practically 
equivalent to equation (3) (broken line in Figure 4); with 
a = l  it becomes equation (15), and with different 

adjustments of a and b it can replace to a good 
approximation the remaining suggested equations, in 
particular equation (10) (see example in Figure 4). 

Obviously, equation (17) gives good fitting of the 
experimental results of Figures 2 and 3 (with a--1 and 
b = 2, and with a = 1 and b = 0 respectively); and Figure 5 
shows, as an example, that it fits equally well (with a-- 1 

and b=0.80) the results of Landon et al/1, from 
polyurethane filled with hollow spheres, intermediate to 
those of Figures 2 and 3. 
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Figure 4 Relation between are I and • as expressed by equation (17) 
with a =  1 or a = 2  and the indicated values of the parameter b. ( - - ) ,  
equation (3); ( . . . . .  ), equation (10) with a=0.5  and b =  1.21 
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Figure 5 Fitting of experimental results from ref. II by equation (17) 
with a =  I and b = 0.80. Broken lines: (A), equation (3); (B) equation (9) 
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CASE OF A D H E S I O N  

For the case of adhesion, two main models have been 
formulated with a special reference to polymeric matrix 
particulate composites. 

According to Nielsen 22, a very simple model is 
suggested by assuming for the tensile strength rigorous 
Hookean behaviour up to breaking strains; then, 
cr~ = Ecec, where E is the tensile modulus and e is elongation 
to break, and ec may be expressed according to a simple 
model as: 

ec = em(l  - - ( I  )1/3)  

where em is elongation to break of the matrix, so that: 
w 

1.2 

I.O 

0.8 
\ t  

A 

A' 

O're I = E ~ ( 1  - - ( I  )1 /3)  ( 1 8 )  

The ratio Ec/E m can be calculated according to one of 
the models already advanced for the modulus of 
particulate composites. In Figure 6 two examples of 
equation (18) are represented (broken lines A and B) as 
calculated by Nielsen using for Ec/E m the equations of 
Kerner and Eilers-Van Dijck respectively 2z. 

According to Leidner and Woodhams 2°, on the basis of 
a micromechanical analysis of stress transfer between 
matrix and spherical particles, ac should decrease initially 
with • according to the same linear equation (like 
equation (14)) that they found for the case of no adhesion, 
but beyond a critical tI) value it should increase according 
to another linear equation. 

Agreement with experimental results is somewhat 
problematic. As a matter  of fact the results, though with 
various amplitudes for different materials and degrees of 
adhesion, show in general a nonmonotonic pattern with a 
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Figure 7 Fitting of experimental results from ref. 23 (A) and from ref. 
7b (O) by equation (20) or by equation (17) (see text) 

decrease o f a  c at low ~ values, frequently steeper than that 
for the corresponding case of no adhesion, followed by a 
minimum and an increase. 

We suggest, on a purely empirical basis, an extension of 
our equation (17) to the case of adhesion, by which the 
condition expressed by equation (16) is extended with a 
quadratic third term: 
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Figure 6 (A, B): relationship between O're I and ~ in the case of adhesion, 
as calculated by Nielsen 22 using, for the relative modulus, the equations 
of Kerner (A) and of Eilers Van Dijck (B). (C, D): fitting by equation (20) 
of our experimental results with a modified polyester resin (O)(C: a = 1, 
b=2.20, c = - 5 . 4 1 )  and vinyl ester resin (A) (D: a = l ,  b=0.38, 
c = - 1.90) filled with CaCO 3 

C =a  + bO + c~  2 (19) 

so that equation (17) becomes: 

a,el - a + b~  + C(I )2 (adhesion) (20) 

In Fioure 6 two examples are shown (full lines C and D) 
of the fitting by equation (20) of our results with a 
modified polyester resin and a vinyl ester resin 
respectively, filled with CaCO 3 particles sized about 3/~m 
(by putting a = 1, b = 2.20, c = - 5.41 ; and a = i, b = 0.38, 
c = - 1.90, respectively). 

Fioure 7 shows the best fitting by equation (20) of the 
results of Spanoudakis and Young 23 on an epoxy filled 
with glass spheres (full line A: a =  1, b =  1.01, c =  - 4.63), 
and of the Nicodemo and Nicolais TM with SAN filled with 
AI particles (full line B: a = l ,  b=3.96,  c = - 9 . 0 ) .  It is 
interesting to observe that these two cases offer an 
example of typical difficulties that can arise in this kind of 
analysis. In fact, the results from ref. 23 could be better 
represented by equation (20) with a = 1.18, b = - 1.07 and 
c = - 0.70 (broken line A'); on the other hand, the results 
from ref. 7b could be very well fitted by equation (17) (case 
of no adhesion, as indicated by the authors), if the 
experimental point at • = 0.34 were discarded (broken 
line B': a = 1, b = 2.30). 

POLYMER, 1986, Vol 27, September 1389 



Strength of particulate composites." F. Danusso and G. Tieghi 

ACKNOWLEDGEMENTS 

This work was undertaken with the financial support of 
CNR (Progetto Finalizzato Chimica Fine e Secondaria), 
Roma, with a MPI-60~o contribution. 

REFERENCES 

1 Nicolais, L. and Narkis, M. Polym. Eny. Sci. 1971, 11, 194; 
Nicolais, L., Drioli, E. and Landel, R. F. Polymer 1973, 14, 21 

2 Eudier, M. Powder Met. 1962, 5, 278 
3 See e.g. Coxeter, H. S. M. 'Introduction to Geometry' 2nd Edn., 

John Wiley, New York, 1969, p. 405 
4 Butcher, B. R. and Howlett, B. W. Int. J. Powder Met. 1966, 2, 29 
5 Ishimaru, Y., Saito, Y. and Nichino, Y. 'Modern Developments in 

Powder Metallurgy', Vol. 4, Plenum Press, New York, 1971, 
p. 441 

6 Griffiths, T. J., Davies, R. and Basset, M. B. Powder Met. 1979, 22, 
119 

7 (a) Nicolais, L. and Nicodemo, L. Int. J. Polym. Mat. 1974, 4, 229; 
(b) Nicodemo, L. and Nicolais, L. J. Mater. Sci. Letters 1983, 2, 
201 

8 Nicolais, L. and Mashelkar, R. A. J. Appl. Polym. Sci. 1976, 20, 
561 

9 Delesse, A. Ann. Mines 1848, 13, 370 
10 Danusso, F., Tieghi, G., Tanzi, M. C. and Botto, P. 'I Materiali 

per l'Ingegneria', I Convegno ASMI, Pitagora Editrice, Bologna, 
1983; Danusso, F., Tieghi, G. and Lestingi, A. submitted to J. 
Appl. Polym. Sci. 

11 Landon, G., Lewis, G. and Boden, G. F. J. Mater. Sci. 1977, 12, 
1605 

12 Lange, F. F. 'Fracture of Brittle Matrix, Particulate Composites' 
in 'Fracture and Fatigue', (Ed. L. J. Broutman), Academic Press, 
New York, 1974 

13 See, e.g. Sahu, S. and Broutman, L. J. Polym. En 9. Sci. 1972, 12, 91 
14 Masi, P., Nicolais, L, Mazzola, M. and Narkis, M. J. Appl. 

Polym. Sci. 1983, 28, 1517 
15 McAdam, G. D. Powder Met. 1967, 10, 307 
16 Balshin, M. Y. Doklady Akad. Nauk SSSR 1949, 67, 831 
17 Pines, B. Y. and Suchinin, I. N. Zh. Tekhn. Fiz. 1956, 26, 2076 
18 Bagshaw, N. E., Barnes, M. P. and Evans, J. A. Powder Met. 1967, 

10, 13 
19 Piggot, M. R. and Leidner, J. J. Appl. Polym. Sci. 1974, 18, 1619 
20 Leidner, J. and Woodhams, R. T. J. Appl. Polym. Sci. 1974, 18, 

1639 
21 Haynes, R. Powder Met. 1971, 14, 64 
22 Nielsen, L. E. J. Appl. Polym. Sci. 1966, 10, 97 
23 Spanoudakis, J. and Young, R. J. J. Mater. Sci. 1984, 19, 487 

1390 POLYMER, 1986, Vol 27, September 


